Gelfand Models for Diagram Algebras : extended abstract
نویسنده
چکیده
A Gelfand model for a semisimple algebra A over C is a complex linear representation that contains each irreducible representation of A with multiplicity exactly one. We give a method of constructing these models that works uniformly for a large class of combinatorial diagram algebras including: the partition, Brauer, rook monoid, rook-Brauer, Temperley-Lieb, Motzkin, and planar rook monoid algebras. In each case, the model representation is given by diagrams acting via “signed conjugation” on the linear span of their vertically symmetric diagrams. This representation is a generalization of the Saxl model for the symmetric group, and, in fact, our method is to use the Jones basic construction to lift the Saxl model from the symmetric group to each diagram algebra. In the case of the planar diagram algebras, our construction exactly produces the irreducible representations of the algebra. Résumé. Un modèle de Gelfand pour une algèbre semi-simple A sur C est une représentation linéaire complexe qui contient chaque représentation irréductible de A avec multiplicité exactement un. Nous fournissons une méthode de construction explicite de ces modèles qui fonctionne de manière uniforme pour une grande classe d’algèbres de schéma combinatoire, y compris: la partition, Brauer, rook-monoid, rook-Brauer, Temperley-Lieb, Motzkin, et algèbres planaires rook monoid. En chaque cas, la représentation du modèle est donnée par les diagrammes agissant par “conjugaison signé” sur l’espace engendré par les diagrammes verticalement symétriques. Cette représentation est une généralisation du modèle Saxl pour le groupe symétrique, et, en fait, notre méthode est d’utiliser le “Jones basic construction” pour étendre le modèle Saxl du groupe symétrique à chaque algèbre diagramme. Dans le cas des algèbres de diagrammes planaires, notre construction produit exactement les représentations irréductibles de l’algèbre.
منابع مشابه
Combinatorial Gelfand Models for Semisimple Diagram Algebras
We construct combinatorial (involutory) Gelfand models for the following diagram algebras in the case when they are semi-simple: Brauer algebras, their partial analogues, walled Brauer algebras, their partial analogues, Temperley-Lieb algebras, their partial analogues, walled Temperley-Lieb algebras, their partial analogues, partition algebras and their Temperley-Lieb analogues.
متن کاملCombinatorial Gelfand models for some semigroups and q-rook monoid algebras
Inspired by the results of [APR], we propose combinatorial Gelfand models for semigroup algebras of some finite semigroups, which include the symmetric inverse semigroup, the dual symmetric inverse semigroup, the maximal factorizable subsemigroup in the dual symmetric inverse semigroup, and the factor power of the symmetric group. Furthermore we extend the Gelfand model for the semigroup algebr...
متن کاملOn the Bernstein-Gelfand-Gelfand resolution for Kac-Moody algebras and quantized enveloping algebras
A Bernstein-Gelfand-Gelfand resolution for arbitrary Kac-Moody algebras and arbitrary subsets of the set of simple roots is proven. Moreover, quantum group analogs of the Bernstein-Gelfand-Gelfand resolution for symmetrizable Kac-Moody algebras are established. For quantized enveloping algebras with fixed deformation parameter q ∈ C \ {0} exactness is proven for all q which are not a root of un...
متن کاملConstructive Gelfand Duality for C*-algebras
We present a constructive proof of Gelfand duality for C*-algebras by reducing the problem to Gelfand duality for real C*-algebras.
متن کاملRealization of locally extended affine Lie algebras of type $A_1$
Locally extended affine Lie algebras were introduced by Morita and Yoshii in [J. Algebra 301(1) (2006), 59-81] as a natural generalization of extended affine Lie algebras. After that, various generalizations of these Lie algebras have been investigated by others. It is known that a locally extended affine Lie algebra can be recovered from its centerless core, i.e., the ideal generated by weight...
متن کامل